4. Equilibria in multi-proton-donating acid systems

The most common multi-proton-donating acids are:
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, phthalic acid, EDTA.

phthalic acid

EDTA
Let us consider equilibria that occur in $\mathrm{H}_{3} \mathrm{PO}_{4}$ acid solutions and its salts:
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \underset{K_{a_{2}}}{\stackrel{K_{a 1}}{\rightleftarrows}} \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{pK}_{\mathrm{a} 1}=2.15$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{K}_{a 2}}{\stackrel{K_{a 2}}{\rightleftarrows}} \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{pK}_{\mathrm{a} 2}=7.21$
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{a 3}}{\rightleftarrows} \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{pK}_{\mathrm{a} 3}=12.34$
Constants can be written in form of, respectively:

$$
K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} \quad K_{\mathrm{a} 2}=\frac{\left[\mathrm{HPO}_{4}^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]} \quad K_{\mathrm{a} 1}=\frac{\left[\mathrm{HPO}_{4}^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{PO}_{4}^{3-}\right]}
$$

It is possible to write these equilibria in the reverse order of reaction:
$\begin{array}{lll}\mathrm{PO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \mathrm{O} \underset{\mathrm{K}_{b_{1}}}{\rightleftarrows} & \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-} & \mathrm{pK}_{\mathrm{b} 1}=14-\mathrm{pK}_{\mathrm{a} 3}=14-12.34=1.66 \\ \stackrel{\mathrm{~K}_{2}}{\rightleftarrows} & \mathrm{H}_{2} \mathrm{PO}_{4}-+\mathrm{OH}^{-} & \mathrm{pK}_{\mathrm{b} 2}=7.21-\mathrm{pK}_{\mathrm{a} 2}=14-7.21=6.79 \\ \mathrm{H}_{2} \mathrm{PO}_{4}-+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 3}}{\rightleftarrows} & \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-} & \mathrm{pK}_{\mathrm{b} 3}=12.34-\mathrm{pK}_{\mathrm{a} 1}=14-2.15=11.85\end{array}$
These equilibria can be written as:

$$
K_{\mathrm{b} 1}=\frac{\left[\mathrm{HPO}_{4}^{2-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{PO}_{4}^{3-}\right]} \quad K_{\mathrm{b} 2}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} \quad K_{\mathrm{b} 3}=\frac{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}
$$

Let us consider different cases. What would be the pH of the following systems?:
a) $\mathrm{H}_{3} \mathbf{P O}_{4}$ is an acid, so it will undergo the reaction described by the equilibrium $K_{\mathrm{a} 1}$.
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{a 1}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{p} K_{\mathrm{a} 1}=2.15$
b) $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ is a salt, which should be considered after its dissociation to the ions: Na^{+}and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$.
From the hydrolysis reaction equations we can conclude that $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ion can undergo two types of the reaction:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{K_{b 3}}{\stackrel{K_{a 2}}{\rightleftarrows}} \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{p} K_{\mathrm{a} 2}=7.21$ or
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 3}}{\rightleftarrows} \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-} \quad \mathrm{p} K_{\mathrm{b} 3}=12.34-\mathrm{p} K_{\mathrm{a} 1}=14-2.15=11.85$
In order to know which of those two reactions is the dominating one, it is necessary to take into account values of the both reaction equilibrium constants: $\mathrm{p} K_{\mathrm{a} 2}=7.21$ and $\mathrm{p} K_{\mathrm{b} 3}=11.85$. It is hard to conclude at the first glance, so let us look closer at the values of these constants: $K_{\mathrm{a} 2}=10^{-7.21}$ vs. $K_{\mathrm{b} 3}=10^{-11.85}$ The question is, which one of those two values is larger? Now we can easily point out that larger one is $K_{\mathrm{a} 2}$. Thus, the reaction that will be statistically dominating one is a reaction:
$\mathrm{H}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{a 2}}{\rightleftarrows} \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
As a result of this reaction, the systems (solutions) with this salt will be acidic.
c) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ is also a salt, so we can perform simiar consideration as with the previous case. Let us consider ionic dissociation of this salt: $\mathrm{Na}_{2} \mathrm{HPO}_{4} \rightleftarrows 2 \mathrm{Na}^{+}+\mathrm{HPO}_{4}{ }^{2-}$ Subsequently, we can consider hydrolysis reaction of the $\mathrm{HPO}_{4}{ }^{2-}$ ion.
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \underset{K_{b 2}}{\stackrel{K_{a 3}}{\leftrightarrows}} \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{p} K_{\mathrm{a} 3}=12.34$
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 2}}{\rightleftarrows} \quad \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{OH}^{-} \quad \mathrm{p} K_{\mathrm{b} 2}=6.79$
Now we compare above equilibrium constants and $K_{\mathrm{a} 3}=10^{-12.34}$ is smaller than $K_{\mathrm{b} 2}=10^{-6.79}$. Thus, the dominating reaction will be the following reaction:
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 2}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$
As a result, system with this salt will be basic.
d) $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is a salt, in which after the dissociation only the $\mathrm{PO}_{4}{ }^{3-}$ ion can undergo hydrolysis reaction. Thus, pH of solutions with this salt will be basic, as the only possible hydrolysis reaction to occur is the one producing OH^{-}ions.

Zadanie 4.1

What will be the pH of the solution resulting from mixing 200 ml of 0.1 M phthalic acid (water solution) and 100 ml of $0.2 \mathrm{M} \mathrm{NaOH} ? \mathrm{p} K_{\mathrm{a} 1}=2.94 ; \mathrm{p} K_{\mathrm{a} 2}=5.43$
Answer: $\mathbf{p H}=3.3$

Zadanie 4.2

What volume of 0.1 M KOH is required to fully neutralize $0.5 \mathrm{dm}^{3}$ of 0.05 M carbonic acid?
What will be the pH of the resulting solution? $\mathrm{p} K_{\mathrm{a} 1}=6.35 ; \mathrm{p} K_{\mathrm{a} 2}=10.33$
Hint: Neutralization occurs when $n_{\mathrm{H} 3 \mathrm{O}+}=n_{\text {OH- }}$
Answer: $0.5 \mathrm{dm}^{\mathbf{3}} \boldsymbol{;} \mathbf{p H}=11.34$

Zadanie 4.3

To the $250 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ has been added $150 \mathrm{~cm}^{3}$ of 0.1 M NaOH . Calculate what would be the pH of the resulting solution. $\mathrm{p} K_{\mathrm{a} 1}=2.15$
Answer: $\mathbf{p H}=\mathbf{2 . 3 2}$

Zadanie 4.4

Calculate what would be the pH of NaHCO_{3} salt solution at 0.1 M concentration. $\mathrm{p} K_{\mathrm{a} 1}=6.35$; $\mathrm{p} K_{\mathrm{a} 2}=10.33$
Asnwer: $\mathbf{p H}=9.67$

Zadanie 4.5

Equal volumes of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ and $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solutions have been mixed together. Calculate the pH of the resulting solution. Write down the reaction equations. $\mathrm{p} K_{\mathrm{a} 1}=2.15$; $\mathrm{p} K_{\mathrm{a} 2}=7.21 ; \mathrm{p} K_{\mathrm{a} 3}=12.34$
Hint: Take into the account the resulting solution volume.
Answer: $\mathbf{H}_{3} \mathbf{P O}_{\mathbf{4}}+\mathbf{N a}_{2} \mathbf{H P O}_{\mathbf{4}} \rightarrow \mathbf{2 N a H}_{\mathbf{2}} \mathrm{PO}_{\mathbf{4}} ; \mathbf{p H}=\mathbf{4 . 1 1}$

