4. Equilibria in multi-proton-donating acid systems

The most common multi-proton-donating acids are: H_3PO_4 , H_2CO_3 , $H_2C_2O_4$, phthalic acid, EDTA.

Let us consider equilibria that occur in H₃PO₄ acid solutions and its salts:

 $\begin{array}{rcl} H_{3}PO_{4} + H_{2}O & \overleftarrow{k_{a1}} \\ H_{2}PO_{4}^{-} + H_{2}O & \overleftarrow{k_{a2}} \\ H_{2}PO_{4}^{-} + H_{2}O & \overleftarrow{k_{a2}} \\ HPO_{4}^{2-} + H_{3}O^{+} \\ HPO_{4}^{2-} + H_{2}O & \overleftarrow{k_{a3}} \\ HPO_{4}^{3-} + H_{3}O^{+} \\ HO_{4}^{3-} \\ HO_{4}^{3-} + H_{3}O^{+} \\ HO_{4}^{3-} \\ HO_$

Constants can be written in form of, respectively:

$$K_{a1} = \frac{[\text{H}_2\text{PO}_4^-] [\text{H}_3\text{O}^+]}{[\text{H}_3\text{PO}_4]} \qquad K_{a2} = \frac{[\text{HPO}_4^{2^-}] [\text{H}_3\text{O}^+]}{[\text{H}_2\text{PO}_4^-]} \qquad K_{a1} = \frac{[\text{HPO}_4^{2^-}] [\text{H}_3\text{O}^+]}{[\text{PO}_4^{3^-}]}$$

It is possible to write these equilibria in the reverse order of reaction:

 $PO_{4}^{3-} + H_{2}O \xrightarrow[K_{b_{2}}]{} HPO_{4}^{2-} + OH^{-} pK_{b1} = 14 - pK_{a3} = 14 - 12.34 = 1.66$ $HPO_{4}^{2-} + H_{2}O \xrightarrow[K_{b_{3}}]{} H_{2}PO_{4}^{-} + OH^{-} pK_{b2} = 7.21 - pK_{a2} = 14 - 7.21 = 6.79$ $H_{2}PO_{4}^{-} + H_{2}O \xleftarrow[K_{b_{3}}]{} H_{3}PO_{4} + OH^{-} pK_{b3} = 12.34 - pK_{a1} = 14 - 2.15 = 11.85$

These equilibria can be written as:

$$K_{b1} = \frac{[\text{HPO}_4^{2^-}][\text{OH}^-]}{[\text{PO}_4^{3^-}]} \qquad K_{b2} = \frac{[\text{H}_2\text{PO}_4^-][\text{OH}^-]}{[\text{HPO}_4^{2^-}]} \qquad K_{b3} = \frac{[\text{H}_3\text{PO}_4][\text{OH}^-]}{[\text{H}_2\text{PO}_4^-]}$$

Let us consider different cases. What would be the pH of the following systems?: **a)** H₃PO₄ is an acid, so it will undergo the reaction described by the equilibrium K_{a1} . H₃PO₄ + H₂O $\stackrel{K_{a1}}{\leftarrow}$ H₂PO₄⁻ + H₃O⁺ p K_{a1} = 2.15

b) NaH₂PO₄ is a salt, which should be considered after its dissociation to the ions: Na⁺ and $H_2PO_4^-$.

From the hydrolysis reaction equations we can conclude that $H_2PO_4^-$ ion can undergo two types of the reaction:

 $H_2PO_4^- + H_2O \xrightarrow{K_{a2}} HPO_4^{2-} + H_3O^+ pK_{a2} = 7.21$ or $H_2PO_4^- + H_2O \xrightarrow{K_{b3}} H_3PO_4 + OH^- pK_{b3} = 12.34 - pK_{a1} = 14 - 2.15 = 11.85$ In order to know which of those two reactions is the dominating one, it is necessary to take into account values of the both reaction equilibrium constants: $pK_{a2} = 7.21$ and $pK_{b3} = 11.85$. It is hard to conclude at the first glance, so let us look closer at the values of these constants: $K_{a2} = 10^{-7.21}$ vs. $K_{b3} = 10^{-11.85}$ The question is, which one of those two values is larger? Now we can easily point out that larger one is K_{a2} . Thus, the reaction that will be statistically dominating one is a reaction: $H_2PO_4^- + H_2O \xrightarrow{K_{a2}} HPO_4^{2-} + H_3O^+$

As a result of this reaction, the systems (solutions) with this salt will be acidic.

c) Na₂HPO₄ is also a salt, so we can perform simiar consideration as with the previous case. Let us consider ionic dissociation of this salt: Na₂HPO₄ $\stackrel{\rightarrow}{\leftarrow}$ 2Na⁺ + HPO₄²⁻ Subsequently, we can consider hydrolysis reaction of the HPO₄²⁻ ion.

HPO₄²⁻ + H₂O $\underset{K_{b2}}{\overset{K_{a3}}{\leftarrow}}$ PO₄³⁻ + H₃O⁺ pK_{a3} = 12.34 HPO₄²⁻ + H₂O $\underset{K_{b2}}{\overset{K_{b2}}{\leftarrow}}$ H₂PO₄⁻ + OH⁻ pK_{b2} = 6.79 Now we compare above equilibrium constants and K_{a3} = 10^{-12.34} is smaller than K_{b2} = 10^{-6.79}. Thus, the dominating reaction will be the following reaction:

 $HPO_{4^{2^{-}}} + H_{2}O \xrightarrow{K_{b2}} H_{2}PO_{4^{-}} + OH^{-}$ As a result, system with this salt will be basic.

d) Na₃PO₄ is a salt, in which after the dissociation only the PO_4^{3-} ion can undergo hydrolysis reaction. Thus, pH of solutions with this salt will be basic, as the only possible hydrolysis reaction to occur is the one producing OH⁻ ions.

Zadanie 4.1

What will be the pH of the solution resulting from mixing 200 ml of 0.1M phthalic acid (water solution) and 100 ml of 0.2M NaOH? $pK_{a1} = 2.94$; $pK_{a2} = 5.43$ Answer: pH = 3.3

Zadanie 4.2

What volume of 0.1M KOH is required to fully neutralize 0.5 dm³ of 0.05M carbonic acid? What will be the pH of the resulting solution? $pK_{a1} = 6.35$; $pK_{a2} = 10.33$ *Hint:* Neutralization occurs when $n_{H3O+} = n_{OH-}$ **Answer: 0.5dm³ ; pH = 11.34**

Zadanie 4.3

To the 250 cm³ of 0.1M H₃PO₄ has been added 150 cm³ of 0.1M NaOH. Calculate what would be the pH of the resulting solution. $pK_{a1}=2.15$ Answer: pH = 2.32

Zadanie 4.4

Calculate what would be the pH of NaHCO₃ salt solution at 0.1M concentration. $pK_{a1} = 6.35$; $pK_{a2} = 10.33$ Asnwer: pH = 9.67

Zadanie 4.5

Equal volumes of 0.1M H₃PO₄ and 0.1M Na₂HPO₄ solutions have been mixed together. Calculate the pH of the resulting solution. Write down the reaction equations. $pK_{a1} = 2.15$; $pK_{a2} = 7.21$; $pK_{a3} = 12.34$ *Hint: Take into the account the resulting solution volume.* **Answer: H₃PO₄ + Na₂HPO₄ \rightarrow 2NaH₂PO₄ ; pH = 4.11**