Supporting materials for „Electrochemistry" lecture

1. Concentrations, volume to mass calculations, ions' amount, itp.

Concentrations can be given in various forms, for instance:

- percentage concentration C_{p} given as a $\%$ of a the substance mass in the total mass (of solution/mixture)
- molar concentration given as an amount of moles of a substance per $1 \mathrm{dm}^{3}$ (of solution/mixture) unit is often abbreviated to " M ", for instance 0.1 M means $0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$
- molal concentration given as an amount of moles of a substance per 1 kg of solvent/matrix

1 mol is a unit describing amount of molecules or atoms (mole is a word just like million or billion) and its value is always equal to Avogadro number - $6.022 \cdot 10^{23}$; thus, Avogardo number: $N_{\mathrm{A}} \approx 6.022 \cdot 10^{23} \mathrm{~mol}^{-1}$.

Each type of atoms (element) has its own characteristic molar mass, which describes how much weighs 1 mol of that substance. Those values can be taken from the periodic table - for instance for hydrogen atom this value is $1.008 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; and for silicon atom it is $28.086 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

WARNING: It is worth learning physical units in which each quantity is given, as this makes learning equations/formulae or their transformations/derivations easier (often you do not need to remember those if you know the unit).

Density of substances describes how many grams weighs for instance $1 \mathrm{~cm}^{3}$ of substance.

Example 1.

Calculate how many moles of pure acetic acid is in 1.5 kg of 15% acetic acid solution.
Мснзсоон $=60 \mathrm{~g} / \mathrm{mol}$
Answer: 3.75 mol

Solution:

1.5 kg is 100% of substance and we know that 15% is a pure $\mathrm{CH}_{3} \mathrm{COOH}$. We can form proportions: 1.5 kg --- 100%
$x \mathrm{~kg}--\mathrm{t} 5 \%=>x=15 \cdot 1.5: 100=0.225 \mathrm{~kg}=225 \mathrm{~g}-$ this is how many grams of $\mathrm{CH}_{3} \mathrm{COOH}$ are in the solution
Molar mass of acetic acid is $60 \mathrm{~g} / \mathrm{mol}$, which means that 1 mole weighs 60 g . Proportions are as follows:
60 g --- 1 mol
225 g --- $\mathrm{y} \mathrm{mol}=>\mathrm{y}=225 \cdot 1: 60=\mathbf{3 . 7 5} \mathbf{~ m o l}$

Task 1.1

Calculate the acetic acid percentage concentration if its solution was obtained through mixing 250 g of water with 5 g of glacial acetic acid (glacial here means that it is pure, assume 100% acetic acid).
Answer: 1.96\%

Task 1.2

Calculate how much $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H} 2 \mathrm{O}$ salt one should add to 150 g of water in order to obtain 20% solution of this salt. $\mathrm{M}_{\mathrm{Mg}(\mathrm{NO} 3) 2 \cdot 2 \mathrm{H} 2 \mathrm{O}}=184.3 \mathrm{~g} / \mathrm{mol} ; \mathrm{M}_{\mathrm{Mg}(\mathrm{NO} 3) 2}=148.3 \mathrm{~g} / \mathrm{mol}$
Answer: $\mathbf{4 6 . 6 0}$ g
Clue: you have to take into account water content in the original form of solid salt.

Task 1.3

Calculate in what proportions one have to mix 0.5 M acetic acid and water in order to obtain 0.1 M acetic acid.
Answer: acid:water in 1:4 ratio
Clue: You can use „across" method:

+ water without acid (0 M acid concentration)
acid solution
ratio is $0.1: 0.4$ which is the same as $1: 4$ Thus, one needs to mix 1 part of 0.5 M acid and 4 parts of pure water.

In a similar manner one can use the ,,across" method to obtain solutions by mixing two solutions of known molar concentration.

For instance, two known solutions are given: 1 M and 0.2 M . In what ratio one should mix them to obtain 0.4 M solution?
1M solution

Ratio of $1: 3$, thus one needs to mix 1 part of 1 M solution and 3 parts of 0.2 M solution to obtain 0.4 M solution
0.2 solution

Task 1.4

Calculate the molar concentration of each ion in the solution after mixing two equal volumes of 0.5 M NaOH and 0.5 M HCl solutions.

Answer: 0.25 M of Na^{+}and $\mathbf{C l}$

Clue: Take into the account neutralization reaction: $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Water dissociates to a very small extent (concentration of ions resulting from autodissociation of water is $2 \cdot 10^{-7} \mathrm{M}$ at $25^{\circ} \mathrm{C}$)

Task 1.5

100 ml of $0.1 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ solution is given (thus 0.1 M of Ca^{2+} ions and 0.2 M of NO_{3}^{-}ions). Calculate how much concentration of ions in the solution will change if
a) solution will evaporated until its volume will drop to 50 ml (only water evaporates);
b) 100 ml of distilled water is added;
c) 0.745 g of KCl is added $\left(\mathrm{M}_{\mathrm{KCl}}=74.5 \mathrm{~g} / \mathrm{mol}\right)$.

Dissociation equation is: $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \leftrightarrow \mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}{ }^{-}$
Warning: Each subtask should be calculated starting from 100 ml of $0.1 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ solution.
Answer: Concentration will a) increase by 0.1 M of $\mathbf{C a}^{2+}$ ions and by 0.2 M of NO^{3-} ions; b) decrease by 0.05 M of Ca^{2+} ions and 0.1 M of $\mathrm{NO}_{3}{ }^{-}$ions; c) increase by 0.1 M of K^{+}ions and by 0.1 M of Cl^{-}ions.

