Electronic Supplementary Information:

Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models

Johan Scheers,*^{*a*} Leszek Niedzicki,^{*b,c*} Grażyna Z. Żukowska,^{*b,c*} Patrik Johansson,^{*a,c*} Władysław Wieczorek^{*b,c*} and Per Jacobsson^{*a*}

^aDepartment of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

^bPolymer Ionics Research Group, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00664 Warsaw, Poland.

^cALISTORE-European Research Institute

*Corresponding author. Tel.: +46 31 772 3177; fax: +46 31 772 2090. E-mail address: johan.scheers@chalmers.se

Figure S1. Raman spectra showing Li^{\dagger} coordination effects on the vibration modes of ACN; in LiTDI:ACN only (a, b, and c) and in the presence of water (d, e, f).

Figure S2. Raman spectra showing the effect of water on a) the v(C3-N2) modes and b) the polymer backbone in PEO-based electrolytes.

Figure S3. Calculated Raman spectra of the vibrational shifts resulting from different LiTDI ion pair configurations (vertical lines) in comparison with TDI (envelopes) in three different regions; a-c) (vacuum, B3LYP/6-311+G(d)).

Table S1. Assigned vibrational spectrum of TDI, based on the calculated energy minimum structure in vacuum. Experimental data are given for a 1M LiTDI:H₂O electrolyte (wavenumbers and qualitative band features).

Mode	υ_{exp}/cm^{-1}	I _{exp} /a.u.	υ_{calc} / cm ⁻¹	IR_{Int} /km·mol ⁻¹	R_{Act} /Å ⁴ ·amu ⁻¹	Tentative assignment	
33	2238	S	2311	136	565	v _s (C3-N2)	
32			2308	159	378	$v_{as}(C3-N2)$	
31	1499	S	1492	63	149	v(C4-C1; C2-C2*) _{o.o.ph.}	
30	1460	m	1444	61	21	v(C1-N1; C2*-C3*) _{i.ph.}	
29			1440	82	19	v(C1-N1*; C2-C3) _{i.ph.}	
28	1317	S	1331	44	124	v _{as} (N1-C2)	
27			1312	35	24	v _s (N1-C2)	
26	1187	w,br	1189	297	6	$[v(C4-C1)_{o.o.ph}; v_s(C1-N1)]_{i.ph}$	
25	1136	w,br	1171	45	4	v _{as} (N1-C2); v(C4-C1)	
24			1118	322	14	δ(C4)	
23			1073	314	3	π(C4)	
22	996	m	988	92	16	δ(N1-C1-N1*)	
21	765	w,br	757	7	< 1	π(C1)	
20	757	w,sh	755	2	1	$\delta(CF_3)$	
19	708	w,br	715	< 1	2	π(C2; C2*) _{o.o.ph.}	
18			684	5	1	$\delta_{as}(C2-C3-N2)$	
17	679	m	677	7	10	δ(CF ₃); v _s (C2-C3)	
16			586	4	< 1	$v_{as}(C2-C3)$	
15	566	VW	580	2	2	π _s (C2; C3) _{o.o.ph.}	
14			540	5	2	$\pi_{s}(C3)$	
13	525	W	522	< 1	2	δ(F2-C4-F2*); v _{as} (C2-C3)	
12	482	W	506	4	5	δ _s (C2-C3-N2)	
11	466	W	497	< 1	2	$\pi_{as}(C3)$	
10			391	3	< 1	π(NCN*)	
9	392	W	391	2	2	δ(F1-C4-C1; F2-C4-F2*) _{i.ph.}	
8	334	m	330	2	5	v(C4-C1)	
7			250	4	< 1	δ(F1-C4-C1)	
6			209	5	< 1	π(C2C2*) _{i.ph.}	
5			151	< 1	< 1	π(C2C2*) _{o.oph.}	
4			124	1	< 1	δ(C4-C1-N1*)	
3			111	2	9	$\delta_{s}(C2^{*}-C2-C3)$	
2			88	2	4	π(CF ₃)	
1			-8	< 1	1	(CF ₃) _{rotation}	

br = broad; s = strong; sh = shoulder; w = weak; vw = very weak; v = stretching (v_s -symmetric; v_{as} -asymmetric); δ = in plane bending or motion of a toms; π = out of plane bending or motion of a single atom/group of atoms; i.ph. = in phase; o.o.ph. = out of phase.

Model	d(Li-N) /Å	d(Li-F) /Å	∠(Li-N1-C2)	Δv_1^{a} /cm ⁻¹	$\Delta v_2^{\mathbf{b}}$ /cm ⁻¹	Δv_3^c /cm ⁻¹
Ion pairs:						
LiTDI (A)	1.878	1.924	145.5	+17	+35	+43
LiTDI(ACN) ₁ (F)	1.923	2.049	141.3	+16	+27	+53
LiTDI(ACN) ₂ (\boldsymbol{G})	2.004	2.648	130.2	+14	+16	+20
LiTDI(ACN) ₃ (H)	2.074	2.908	129.1	+9	+14	+12
LiTDI(H2O) ₁ (<i>I</i>)	1.908	2.132	137.5	+24	+23	+57
LiTDI(H2O) ₂ (\boldsymbol{J})	1.988	3.281	122.1	+24	+13	+16
LiTDI(H2O) ₃ (K)	2.054	3.286	124.5	+19	+16	+12
$LiTDI_{ACN} (L)^d$	2.059/2.075	2.980/2.946	127.1/122.9	+5/+7	+7/+9	+15/+16
$LiTDI_{H2O}(M)^d$	2.064/2.082	2.988/2.953	127.2/122.8	+5/+8	+7/+9	+15/+15
$[LiTDI(H2O)_3]_{ACN}(N)^d$	2.135/2.120	3.230/3.342	126.2/126.1	+3/+6	+5/+7	+13/+13
Multiplets:						
$Li_2TDI(01)$	1.947/2.009	1.987/4.207	142.6/99.0	+9/+67	+21	+15/+82
Li ₂ TDI (02)	1.946	1.902	147.6	+17	+6/+26	-17/+38
$\text{Li}(\text{TDI})_2(\boldsymbol{P})$	1.977/1.978	2.140/2.150	140.9/141.4	+13	+24	+15/+18
$Li_2TDI_2(\boldsymbol{Q})$	1.941/1.956	2.047/2.047	142.1/142.1	+17	+18	+5/+58
$Li_2TDI(ACN)_6(\mathbf{R1})$	2.097	2.868	130.2	+13	+5	+14
$Li_2TDI(ACN)_5(\mathbf{R2})$	2.086/2.167	2.924	128.8	+10	-1	+12
$LiTDI_2(ACN)_2(S)$	2.138/2.144	2.509/2.678	132.0/135.4	+7	+22	+11
$Li_2TDI_2(ACN)_4(T)$	2.078/	2.132	137.5	+11	+5	+15
Li ₂ TDI(H2O) ₆ (U1)	2.091/2.095	2.884/3.362	125.2/122.4	+35	+19	+31
$Li_2TDI(H2O)_6(U2)$	2.077/2.001	3.220	125.6	+20	+5	+14
$LiTDI_2(H2O)_2(V)$	2.096/2.114	3.196/3.309	125.5/126.0	+7/+12	+10/+21	-2/+6
$Li_2TDI_2(H2O)_4 (W)$	2.032/2.055	2.691/2.692	130.1/130.2	+12	+10	+16
$[Li_2TDI]_{ACN}(XI)$	2.081/2.112	2.629/3.265	131.2/131.4	+13	+21	+31
$[Li_2TDI]_{ACN}(X2)$	2.092	2.932	123.6	+6	+8	+16
$[\text{Li}(\text{TDI})_2]_{\text{ACN}}(Y)$	2.089/2.089	3.116/3.116	126.8/126.8	+6	+8	+16
$[Li_2TDI_2]_{ACN}$ (Z)	2.112/2.113	2.901/2.902	123.3/123.3	+8	+4	+17
Experimental:						
1M LiTDI/ACN				+4	+8	+13/+24

Table S2. Selected geometry	parameters and norma	l modes for mode	l structures.
	parameters and norma	in modes for mode	i oti actai coi

^a v(C4-C1;C2-C2*); ^b v_{as} (N1-C2); ^c δ (N1-C1-N1*); ^dshifts are reported for UAKS/UFF radii.